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Overview

LHe-filled measurement cell confining ultracold neutrons
Applied electric and magnetic fields
Correction for or insensitivity to B-field changes

Based on concept by Golub & Lamoreaux, Phys. Rep. 237
(1994) 1-62.
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EXPERIMENTAL METHOD



NnEDM Measurement Principle

v, =(2u,B,+ 2ed E)/h

| -o-

E B,

v. = (2u,B,- 2ed E)/h

| -0~

E B,

Non-zero d, causes the precession
frequency to be slightly different for E
and B parallel vs. anti-parallel

For E=75kV/cm and d, = 5x10%8 e-cm,
Av =36 nHz

Equivalent to AB, = 1.2 fT

Statistical uncertainty:
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Dual Role of Polarized Helium-3

Co-magnetometer:

Vo = (214,B+ 2ed, E)/h - Measure 3He precession frequency v,
— to correct v, for B-field shifts.
I I _°-> - Negligible 3He EDM
£ B Neutron spin analyzer:
V3= 2u3B,/h — Highly spin-dependent capture
[V = (2uB,- 2ed E)/h | reaction, n+3He>p + T + 764 keV,

= | e
By~ * '

V3= 2usBy/h

Event Rate
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Detection of n+3He—> p+T

* Neutron absorption on 3He is highly spin dependent (0pu>>044)
* Reaction products of n+3He—p+t generates UV scintillation light
(80 nm) in LHe.

 The UV light will be downconverted by a wavelength shifter and
detected by PMTs.

. liquid helium
He
2.
ja] pa
Se* §4 A= 430nm
p.T ¢
S
V\,M

Spin dependent n-3He absorption reaction provides a measurement
of the difference of the neutron precession frequency and the 3He

precession frequency.



Free Precession Method

A dilute admixture of polarized 3He atoms is introduced to the bath of SF *He (x =
N3/N,~ 10%%0r p,,, ~ 101%/cc) as comagnetometer

® B f neutron

f 3He

Measurement cell filled with SF “He

/ / / / /7 Change in magnetic field due to the rotating
magnetization of 3He by SQUID magnetometers
Pickup coils

Signature of EDM appears as a shift in w;-w,, corresponding to the
reversal of E with respect to B, corrected by w,.

3He concentration needs to be adjusted to maximize the sensitivity
* Low concentration = small BR for capture events, weak SQUID signals
* High concentration = short storage time



3He Co-magnetometer Readout

n | l (y - )’n) ? l
d, =——|27(/, —fy)—(3 Ln(]g - fh
N ZE Y
=0.1

scintillation He precession

signals ~10 Hz readout ~100 Hz |
To match statistical error of ool
scintillation signal, we need o

of, =26uHz -
S 04

per 800 s measurement <

period. 109

Expected 3He magnetization
signal amplitude: 2.3 fT

KimY.J., Clayton S. M.

IEEE Transactions on Applied Superconductivity
23, 2500104 (2013).




Spin Dressing

z  (Following Golub & Lamoreaux,
Phys. Rep. 237 (1994), 1-62.)

/B (t)=B,sin w;t
X

Apply oscillating B-field in x-direction
Spin precesses with w(t) = y B,(t)
Angle with z-axis: 0(t) = y (B /) cos w; t
1
(cos 0(t))r = = j dt cos [(yBrs/wer)cos st ] = Jo(yBis/wi)
T
Thus, the spin responds to a small B-field along z-axis with

Yeff = )/0 J O(X)



Dressed Spin Method for nEDM

Y (rad/s/mG)

5 5 ‘ X=YnBrf/(Drf

B y

1

spin -5
X [

A strong non-resonant RF field _
_15 B

y'=vJ, (VBrf/wrf) =vJy (X)

* Can tune the dressing parameter (X = y,B,/w,) until the
relative precession between 3He and neutrons is zero (X = X ).

=£- by (=) 1ol
d, 2E_2~7T(fs /) [ . JZ”(]% f3)

=0 at at “critical \f

4
scintillation signals .
dressing

3He precession frequency



Dressed-Spin Feedback/Modulation

If non-zero EDM, @, =@, —w; ==(2ed E/1)J(X,)
— Relative phase: 0 ,(t)==2ed Et/h
Introduce modulation of X: X (¢#)=X_+¢&cosw, t
W, ~ECOSW, I+ kc?nE
86(1) ~ (e/w )sinw t+kd Et
Scintillation rate S o (86)°

— If EDM, first harmonic increases linearly with t.
— If no EDM, only second harmonic appears.

Apply feedback to dressing parameter to zero first

harmonic; then this feedback vs. E-field direction is the
EDM signal.

Detailed discussion in Golub&Lamoreaux, Phys. Rep. 237
(1994) 1-62, including QM treatment, effect of
pseudomagnetic field, noise analysis, etc.

(for some constant k)



EXPERIMENTAL DESIGN



Strategy

Intense source of UCNs:
— In situ production by cold neutrons in He-ll (Sd
— Long UCN storage time
High E-field
— Good dielectric properties of LHe.
Long coherence time:
— Shielding and uniform B, field (B rel. uniformity)
— Long UCN storage time
— Non-depolarizing walls
High polarization of helium-3 & UCN:
— Helium-3 atomic beam source
— Polarized cold neutron beam
Implement both Free Precession and Dressed Spin met
apparatus.
— Scintillation light detection (same for both methods)

1

nOC =
E|TNycy

hods in the same

— SQUID gradiometers for 3He precession frequency measurement (Free

Precession method only)



Superthermal Production of UCN

R.Golub and J.M.Pendlebury, Phys.Lett.A 62,337,(77)

20
8.9 A cold neutrons get ;
down-scattered in superfluid “He " :
by exciting elementary excitation M|
: o
. . -—a: [
eUp-scattering process is S
w
SUppressed by a large Boltzman 2 Elementary Excitations
factor 8 | in Liquid Helium
o
. m 5
*No nuclear absorption
0 S i TR Lo S e S (S
0 10 20

Momentum Q (nm™)

e Expect a production of ~ 0.2-0.3 UCN/cc/s

* With a 500 second lifetime, p,cy~100-150/cc and N ~3-4x10° for
each of the two 3 liter cells



Spallation Neutron Source (SNS) at ORNL

1 GeV, 1.4 mA Proton Linac

7

Central Helium Front-End Building
Liquefaction £ aent”
A dd - Kly&ron Building

Radio-Frequency L"\Jmi
Facility

Buildings |
S s

(1
Laboratory
and Office
Complex

9 Center for
Nanophase
Materials
Sciences

January 25, 2005

*SNS construction completed: 2006
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nEDM Apparatus (Design Study) :

Measurement cycle:

0. Establish HV & uniform B,,

1. Load pol. 3He through valves in cells.
2. Create UCNs in cells from cold n beam.

Upper
cryostat

3. Apply it/2 pulse.
4. Do Free Precession or Dressed Spin 6m
measurement. Y
5. Remove depol. 3He from cells.
6. Goto 1.
Lower
3 layer p-metal shield cryostat
"""""""" v
\Z
A ne
g9 hE

| ;.._-::::: = , Central detector volume
Magnet and shielding
package



Central Detector System (Design Study)

HV multiplier
3He/*He feed line

Light guide

Ground electrodes
HV electrode

1200-L G10
container for LHe

7.5x10x40 cm3 UCN storage cell
(inner surface coated with wavelength
shifter loaded polystyrene to convert

UV to visible)

*He valve  sQUID pickup
loop



UCN Storage Time Tests at LANL

dPS/dTPB Coated PMMA Cell

Storage time measurement cycle

1. UCNs are loaded into the cell;

2. Cell valve is closed;

3. Variable holding time;

4. Cell valve is opened and
remaining UCNs drain into
monitor detector.

cell 1000 : ——
closed . . |
1000 _filling Counts in Monitor Detector 286K -
& D S — | T T T I T T T I T T I. l ;
- e iEra bk © o 184K
B cell — 600 sec. hold time | " AV-QY A 131K
100 3 o[ens = -E 100 . v w 95K -
- = - - ]
i . 0 o N
I _ 3] i i
10 | 4 Z : 1
3 O B
3 =
10+
1 -
0 200 400 600 800 I
time I
N L || T
More tests are planned w/new NCSU prototype cells. 500 1000 1500

hold time (s)



Electric field for nNEDM experiments

® Sensitivity goesas  §d, o« E-!

® The electric field strength for the previous room temperature
experiments limited to ~ 10 kV/cm.
Problem:field emission electrons at the insulator-cathode

junction.

Insulator — . Electrodes

® |t is expected that a higher electric field can be used in nEDM
experiments in which the measurement cell is immersed in LHe.

How high a field can be applied stably?
What is the effect of an insulator between the electrodes?

What is the dependence on temperature,pressure,electrode
material and properties,etc!?



Requirements/Goals for HV

Electric field goal:
70kV/cm inside the measurement cells

Inner dimension:40 x 7.62 x 10.16 cm3
Wall thickness: 1.27 cm

Minimum leakage current between the electrodes

Electrode material requirements:

Electrodes made of PMMA coated with
conductive material

Electrical resistivity: 102 Q/00 < Rs < 108 Q/O1
Robust to thermal cycling and sparking Minimal

activation due to exposure to neutron
beam

Non-magnetic

Fabrication technique scalable to large
(10x40x80 cm3) complicated 3D shape

HV multiplier
3He/*He feedline

Lightguide

Ground
electrodes

[200-L GI0
container for LHe

Measurement cells neutron

(inner surface beam
coated withTPB)

HYV electrode



Large Scale HV Test Apparatus

* Need for potentials > 600 kV (75 kV/cm across 7 cm plus 2 cm cell walls)
* Capacitance multiplier:variable capacitor; potential increases as the spacing

* Demonstrated voltage amplification (~ 600 kV at 4.2 K).

Movable ground

electrode
HYV electrode

\
N

<

~05m |
Movable charging
electrode




Medium-Scale HV Design

4KL S | | 2 reservoir

Air to
vacuum
FT (100

1 K pold |\ b | I 77K shield )

Electrodes

Vacuum to LHe
FT (50 kV)

FT at 4 K

(0kV) Erac77K
24 (50 kV)



Medium Scale Electrodes

For the initial test, we used electrodes that have the so-called Rogowski profile.
The field in the gap (~1-2 cm) is uniform and is the highest in the system.
Allow us to sample a large area of the electrode surface. Note: breakdown is a random
process: ball-plane and ball-ball geometries only sample a very limited surface area.
First test used electropolished SS electrodes.
Planned tests:
— Grooved electrode w/PMMA spacer ring;
— PMMA cell between electrodes
— Coated PMMA electrodes

Surface: Electric field norm (kV/cm)
Contour: Electric field norm (kV/cm)

12 - 1 A 51509

] 1 1 U =
o o A N O N B O 0 O
T T T T T T T T T

e
N o
T T

Eventually: Full-Scale HV Test with Central Detector prototype.



Magnet System
_—

Inner Dressing Coil 50K Heat Shield

Outer Dressing Coil .
4K Heat Shield

Superconducting
Lead Shield

Ferromagnetic
Shield

Gradient and shim{ % e N
coils

B, cos® Magnet By =10-50mG
Uniformity requirements:
* Uniformity of 5 x 10* from relaxation times for the polarized neutrons and 3He
* <0B,/0x> <0.05 pgauss/cm, <0B,/dz > < 0.1 pgauss/cm, < OBy/dy > < 0.1 pgauss/
cm from geometric phase effects.



$-scale cryogenic
magnetic package

@ Caltech

 Qutside mu-metal
shield

 Pb cylinder
(superconductor
at 7.2 K)

« Ferromagnetic
flux return

« B, cos6-coil

* Fluxgate Magnetic
Sensor

* Cryogenic system studied at operating
field (3 uT)

* Measured gradients (few ppm/cm)
result in geometric phase systematic of
few x 1028 e-cm

..AL
NN %
- A; "', \“ :

pll

3 meters




Atomic Beam Source

Injection System

Purification System

3He Services

To 1K Pot

3He system block diagram

Supply
Internal
McClintock
Purifier
To Dump ¥
Vacuum .

Pump Flushing Atomic

Tube Beam

T Valve Injection | yd Source

Volume (ABS)

Cold Pure
LHe V1 L Injection
Cold Storage Volume Heater 6 Volume Valve
IV2 Valve Displace/ A |
KPressurizer Intermedia
_ . Purifier “T” Injection | & VOlUMe
equestration Intermediate Valve T Valve 1
Volume Volume 2 ‘ %
‘ 5 \ & V1
5 p J I |vq4  Pressurizer
- Valve
IV2 Heater 2 |«—Cell “T" Valve

_——— T T T A
Measurement | '

IJ -
[ h d ;7 Measurement
L ceis R B cela |

_____________

_____________

Isolation
Valves

e Heat flush and diffusion methods is used to move 3He
* 3He flow is controlled by heaters, valves, and
pressurizers.




Full scale cryogenic light collection test @ ORNL

Current estimate of the #PE
e Based on calculations and measurements of
individual loss factors

Factor Value % Error
Nyuvy 4800 15
v 0.76 5
QTPB/4TE 0.90 1
€conv 0.33 19
Ecollect 0.21 5
Ecoated 0.92 5
Eendcaps 0.87 1
€ oles 0.97 10
€gaps 0.78 5
Ground electrode Li . Ear 1.05 4
Ight gwdes s W Estraight—guide 0.64 3
€pend 0.88 10
———— T Epmit 0.18 10
electrode ) PMTs #PE 14.8 32
s S dDirectly measured
2{:3':: light Indirectly measured

Also exploring alternative readout: wavelength-shifting fibers and SiPMs.



SQUID Tests (for Free Precession Method)

& .-l

» Sufficient signal-to-noise was
demonstrated with 3.5-meter pickup leads
and candidate high-inductance SQUID.

* Noincrease in baseline noise due to an
applied B,-field was observed.

 Areference SQUID-magnetometer is
effective to cancel out vibrational noise.

-

Helmholtz coil . .



Systematics study apparatus @ NSCU
PULSTAR reactor

* A system that consists of a single full size
measurement cell at the nEDM operating
temperature, no E-field.

* Long term goal: address key scientific issues
— Critical dressing of n-3He system
— Geometric phase studies
— Spin manipulation studies

* Short term goal
— UCN storage in the cell
— Injection and removal of 3He




Projected Systematic Uncertainties

Error Source

Projected systematic
error (e-cm)

Comments

Linear vxE <2x10%8 Uniformity of B,

Quadratic vxE <0.5x1028 E field reversal to 1%

Pseudomagnetic field <1x1028 1/2 pulse, compare two cells

effects

Uncompensated leakage <0.2x102%® Leakage current <1 nA

current effects

(gravitational offset)

vxE from rotational UCN <1x102%8 Uniformity of E, damping time of the

flow rotational motion of UCN

Heat from leakage <1.5x102%8 Leakage current on the inner surface

currents of the cell wall correlated with the E
field direction

Miscellaneous <1x10728




Summary

* Anew nEDM experiment is under development with
a goal sensitivity 90% CL 0,< (3-5) x 102 e-cm in 300
live-days

* Free precession method:

— SQUIDs to read out the 3He precession frequency
— Scintillation signal for the n relative precession frequency
* Dressed spin method:

— Strong RF field to match n and 3He effective magnetic
moments.

— Modulation/feedback of dressing parameter based on
scintillation signal.

* Ongoing development/demonstration of many
aspects of the apparatus (a subset was shown here).



